RM0008
5.3
5.3.1
Backup registers (BKP)
BKP functional description
Tamper detection
The TAMPER pin generates a Tamper detection event when the pin changes from 0 to 1 or
from 1 to 0 depending on the TPAL bit in the Backup control register (BKP_CR) . A tamper
detection event resets all data backup registers.
However to avoid losing Tamper events, the signal used for edge detection is logically
ANDed with the Tamper enable in order to detect a Tamper event in case it occurs before
the TAMPER pin is enabled.
When TPAL=0: If the TAMPER pin is already high before it is enabled (by setting TPE
bit), an extra Tamper event is detected as soon as the TAMPER pin is enabled (while
there was no rising edge on the TAMPER pin after TPE was set)
When TPAL=1: If the TAMPER pin is already low before it is enabled (by setting the
TPE bit), an extra Tamper event is detected as soon as the TAMPER pin is enabled
(while there was no falling edge on the TAMPER pin after TPE was set)
By setting the TPIE bit in the BKP_CSR register, an interrupt is generated when a Tamper
detection event occurs.
After a Tamper event has been detected and cleared, the TAMPER pin should be disabled
and then re-enabled with TPE before writing to the backup data registers (BKP_DRx) again.
This prevents software from writing to the backup data registers (BKP_DRx), while the
TAMPER pin value still indicates a Tamper detection. This is equivalent to a level detection
on the TAMPER pin.
Note:
5.3.2
Tamper detection is still active when V DD power is switched off. To avoid unwanted resetting
of the data backup registers, the TAMPER pin should be externally tied to the correct level.
RTC calibration
For measurement purposes, the RTC clock with a frequency divided by 64 can be output on
the TAMPER pin. This is enabled by setting the CCO bit in the RTC clock calibration register
The clock can be slowed down by up to 121 ppm by configuring CAL[6:0] bits.
For more details about RTC calibration and how to use it to improve timekeeping accuracy,
please refer to AN2604 " STM32F101xx and STM32F103xx RTC calibration ”.
Doc ID 13902 Rev 9
67/995
相关PDF资料
MCBTMPM330 BOARD EVAL TOSHIBA TMPM330 SER
MCIMX25WPDKJ KIT DEVELOPMENT WINCE IMX25
MCIMX53-START-R KIT DEVELOPMENT I.MX53
MCM69C432TQ20 IC CAM 1MB 50MHZ 100LQFP
MCP1401T-E/OT IC MOSFET DRVR INV 500MA SOT23-5
MCP1403T-E/MF IC MOSFET DRIVER 4.5A DUAL 8DFN
MCP1406-E/SN IC MOSFET DVR 6A 8SOIC
MCP14628T-E/MF IC MOSFET DVR 2A SYNC BUCK 8-DFN
相关代理商/技术参数
MCBSTM32EXLU 功能描述:开发板和工具包 - ARM EVAL BOARD + ULINK2 FOR STM32F103ZG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32EXLU-ED 制造商:ARM Ltd 功能描述:KEIL STM STM32EXL EVAL BOARD
MCBSTM32EXLUME 功能描述:开发板和工具包 - ARM EVAL BOARD + ULINKME FOR STM32F103ZG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200U 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG + ULINK2 RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200UME 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG ULINK-ME RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200UME-ED 制造商:ARM Ltd 功能描述:KEIL STM32F207IG EVAL BOARD
MCBSTM32F400 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F407IG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V